Name: _

Class: _____

2019

Higher School Certificate

Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks – 70

- Section I 10 marks (pages 2-6)
- Attempt Questions 1–10
- Allow about 15 minutes for this section
- Section II 60 marks (pages 7-10)
- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

Section I

Write your answers on the multiple choice answer sheet provided.

- 1. The solution to the equation $2^{x} + 2^{x+1} = 8$ is:
 - (A) x = 1(B) $x = 3 - \log_2 3$ (C) $x = \log_2 5$ (D) $x = \frac{1}{4}$
- 2. A polynomial equation has roots α , β and γ , where

 $\alpha + \beta + \gamma = 0; \ \alpha\beta\gamma = 1; \ \alpha\beta + \alpha\gamma + \beta\gamma = 1$

Which polynomial equation has roots α , β and γ

- (A) $x^3 + x 1 = 0$
- (B) $x^3 + x + 1 = 0$
- (C) $x^3 x + 1 = 0$
- (D) $x^3 x 1 = 0$
- 3. *D*, *C*, and *E* are points on a circle with centre *A*. *DC* is parallel to *AE*. *AD* intersect *CE* at *F*. \angle DFE = 105°

The value of $\angle FAE$ is

- (A) 75°
- (B) 52.5°
- (C) 70°
- (D) 105°

- 4. Consider the function f(x) = e^{x+2} and its inverse function f⁻¹(x). What is the value of f⁻¹(e²)?
 (A) f⁻¹(x) = e^{-(e²)-2}
 - (B) $f^{-1}(x) = e^{(e^2)+2}$
 - (C) $f^{-1}(x) = 0$
 - (D) $f^{-1}(x) = 4$
- 5. The value of $\lim_{x\to 3} \frac{x-3}{\sqrt{x+1}-2}$ is:
 - (A) 4
 - (B) O
 - (C) Not defined
 - (D) 1
- 6. The graph describes the velocity v of a particle at time t.

- (A) The particle is at the origin at A and B.
- (B) The particle moves in a positive direction and changes direction after 3 seconds.
- (C) The particle has a negative acceleration throughout the last second of its trajectory.
- (D) The particle returns to the origin after 4 seconds and comes to rest.

7. A particle is moving along a straight line so that initially its displacement is x = 1, its velocity is v = 2, and its acceleration is a = 4.

Which is a possible equation describing the motion of the particle?

(A)
$$v = x^2 + 2x + 4$$

- (B) $v^2 = 4(x^2 2)$
- (C) $v = 2 + 4 \ln x$
- (D) $v = 2\sin(x 1) + 2$
- 8. The following curve is the graph of the function $y = e^{\sin x}$

The graph is translated vertically and horizontally so that the resulting graph describes an even function which touches the *x*-axis, as shown:

A possible equation for the resulting graph is:

(A) $y = e^{\sin(x - \frac{\pi}{2})} - e$

(B)
$$y = e^{\sin\left(x + \frac{3\pi}{2}\right)} - \frac{1}{e}$$

(C)
$$y = e^{\sin\left(x + \frac{\pi}{2}\right)} - \frac{1}{e}$$

(D)
$$y = e^{\sin(x + \frac{3\pi}{2})} - e^{-\frac{3\pi}{2}}$$

9. The following curve is the graph of which of the following function?

10. Let $f(x) = ax^m$ and $g(x) = bx^n$, where a, b, m and n are positive integers. For both f and g, the domain is all real x.

If f'(x) is a primitive of g(x), then which one of the following must be true?

(A)
$$\frac{m}{n}$$
 is an integer
(B) $\frac{n}{m}$ is an integer
(C) $\frac{a}{b}$ is an integer
(D) $\frac{b}{a}$ is an integer

Section II begins on the next page

Section II

60 marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section

Start each question on a new page. Extra paper is available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Start a new page.

The points *D*, *C* lie on a semicircle with *AB* as diameter. *AC*, *BD* produced intersect at *F*; *AD*, *BC* intersect at *E*.

- (i)Prove that *CEDF* is a cyclic quadrilateral.1(ii)Prove that *FE* is perpendicular to *AB*.2
- (c) Let α , $\beta\,$ and γ , be the three angles of a given triangle.
 - (i) Show that $\tan(\alpha + \beta) = -\tan \gamma$ 1
 - (ii) Hence, or otherwise, prove that: $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \times \tan \beta \times \tan \gamma$

- (d) (i) Show that the equation $\ln(x) = \cos x$ has a solution between x = 1 and x = 2
 - (ii) Using one application of Newton's Method, with x = 1.5 as your initial value, find a better **2** estimate for this solution. Present your answer accurate to three decimal places.
- (e) The velocity, v, measured in centimetres per second, of a particle moving in simple harmonic motion along the x axis, is given by $v^2 = 16x 4x^2 + 20$
 - (i) Show that $\ddot{x} = -4(x-2)$
 - (ii) Find the maximum speed of the particle.

- (a) Find a general solution to the equation $\sin 3x = \cos 2x$ where x is measured in radians.
- (b) Air is escaping from a spherical balloon at the rate of 2 cm³ per second. How fast is the surface area of the balloon shrinking when the radius is 2cm?

(c) If there exists a non-zero constant term in the expansion of $\left(x^2 - \frac{1}{\sqrt{x}}\right)^n$, show that *n* is a multiple of 5.

- (d) From a group of 6 men and 7 women, a committee of 5 people is to be formed.
 - (i) What is the probability that in the committee there is at least one man and at least one woman?
 - (ii) Three particular women and two particular men are chosen to be on the committee and the committee members are seated at random around a circular table. What is the probability that the two men are not seated next to each other?
- (e) Points A and B are located d metres apart on a horizontal plane. A projectile is fired from A towards B with initial velocity u m/s at angle α to the horizontal. At the same time, another projectile is fired from B towards A with initial velocity w ms⁻¹ d at angle β to the horizontal, as shown in the diagram. The projectiles collide when they both reach their maximum height.

The equations of motion of a projectile fired from the origin with initial velocity V m/s at angle θ to the horizontal are: $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{1}{2}gt^2$ (Do NOT prove this)

(i) Show that the projectile fired from A reaches its maximum height at time $t = \frac{usin\alpha}{a}$

1

1

2

2

- (ii) Show that $u \sin \alpha = w \sin \beta$
- (iii) The distance between A and B, is given by: $d = \frac{uw}{g} \sin(\alpha + \beta)$

Question 13 (15 marks) Start a new page.

(a) John stands at point A and sees a tower due north. The angle of elevation from A to the top of the tower is 20°. He then walks in a straight line 70 m to point B and notices the tower is now positioned at a bearing of 330° from him. The angle of elevation from point B to the top of the tower is now 25°.

Copy the diagram on to your answer sheet showing points *A*, *B* and *T* and relevant lengths and bearings.

Calculate the height of the tower, correct to 1 decimal place.

(b) *P* is the point of intersection between x = 0 and $x = \frac{\pi}{2}$ of the graphs of $y = \sec x$ and

 $y = 2\cos x$, as shown.

(ii) The shaded region makes a revolution about the x-axis. Show that the volume of the resulting solid is $\frac{\pi^2}{2}$ cubic units.

1

(c) Use mathematical induction to prove that for all positive integers $n \ge 1$:

 $1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + n \times 2^{n-1} = 1 + (n-1) \times 2^{n}$

- (d) Four fair dice are rolled. Any die showing 6 is left alone, while the remaining dice are rolled again.
 - (i) Find the probability (correct to 2 decimal places) that after the first roll of the dice, exactly one of the four dice is showing 6.
 - (ii) Find the probability (correct to 2 decimal places) that after the second roll of the dice exactly two of the four dice are showing 6.

Question 14 continues over the page

1

(a) (i) Find
$$\int \frac{1}{x \ln x} dx$$
 using the substitution $u = \ln x$

The curve above is the graph of the function $y = \frac{1}{x \ln x}$

(ii) The area shaded is bounded by the curve, the x axis and the lines x = 2 and x = pis 1 square unit. Using part (i), or otherwise, show that $p = 2^e$.

(b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two variable points on a parabola $x^2 = 4ay$.

- (i) If the variable chord PQ is always parallel to the line y = x, show that p + q = 2.
- (ii) The normals at P and Q meet at N. Prove that the locus of N is a straight line. [You may assume that the gradient of the tangent at P is p.]

3

2

(i) Copy the graph of f(x) and sketch the graph of $f^{-1}(x)$, the inverse function of f(x), **1** on the same axes.

(ii) Show that
$$f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$$
 2

3

(iii) By comparing the graphs of f(x) and $f^{-1}(x)$, or otherwise, show that:

$$\int_{0}^{1} \left(x + \sqrt{x^{2} + 1} \right) dx = \frac{1}{2} \left(1 + \sqrt{2} + \ln(1 + \sqrt{2}) \right)$$

END OF EXAMINATION

Ν	а	m	10	е	:
•••	~	•••		-	•

Class: _____

2019

Higher School Certificate

Trial Examination

Mathematics Extension 1 SOLUTIONS

Section I B, A, C, C, A, B, C, C, B

1.

Write your answers on the multiple choice answer sheet provided.

 $2^{x} + 2^{x} \times 2 = 8$ $2^{x} \times 3 = 8$ $2^{x} = \frac{8}{3}$ $x = \log_{2}\left(\frac{8}{3}\right)$ $x = \log_{2} 8 - \log_{2} 3$ $x = 3 - \log_{2} 3$

2. A polynomial equation has roots α , β and γ , where

 $\alpha + \beta + \gamma = -B \qquad \alpha \beta + \alpha \gamma + \beta \gamma = C; \quad \alpha \beta \gamma = -D$ B = 0 C = 1 D = -1 $\underline{x^3 + x - 1 = 0}$

3x = 105x = 35 $\angle FAE = 2x = 70$

4.
$$y = e^{x+2}$$

 $x = e^{y+2}$
 $y = \ln(x) - 2$
 $f^{-1}(x) = \ln(x) - 2$
 $f^{-1}(e^2) = \ln(e^2) - 2 = 0$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+1}-2}$$

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+1}-2} \times \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}$$

$$\lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{x+1-4}$$

$$\lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{x-3}$$

$$\lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{x-3}$$

$$\lim_{x \to 3} (\sqrt{x+1}+2)$$

$$\lim_{x \to 3} (\sqrt{x+1}+2) = 4$$

6. The particle moves in a positive direction and changes direction after 3 seconds.

7.
$$v = 2\sin(x-1) + 2$$
 $v^2 = 4[\sin(x-1) + 1]^2$
At x=1 V=2
Use $a = \frac{d}{dx}\frac{v^2}{2} = \frac{d}{dx}2[\sin(x-1) + 1]^2$

$$a = 4[\sin(x-1) + 1]\cos(x-1)$$

At x=1 a=4

So, D

8. The following curve is the graph of the function $y = e^{\sin x}$

9. The following curve is the graph of the function:

10.

Given
$$f'(x) = \int g(x) dx$$
,
 $amx^{m-1} = \frac{b}{n+1}x^{n+1}$

 $m-1=n+1\dots(1)$ (equate powers) $am=rac{b}{n+1}\dots(2)$ (equate coefficients)

Solving simultaneous equations:

$$m(n+1) = rac{b}{a}$$

Since $m, n+1$ are both integers (i.e. $\in Z^+$),
 $\Rightarrow m(n+1) \in Z^+$
 $\therefore rac{b}{a} = m(n+1) \in Z^+$
 $\Rightarrow D$

MATHEMATICS Extension 1 : Question Marks **Suggested Solutions Marker's Comments** cosx sin'x dx 2) () for Integrating Sinac 1) for correct Substitution and = evaluation provided the expression wasn't C L) made simpler. D R 6 ILACB = LADB = 90° (angles in a semi-circle) LFCB+LALB= 180° (angle sum of a straight angle) : LFLB= 180 - 90 = 90° LFDA + LODA = 180 Langle Sum of a straight egel) : LFDA = 180 - 90 = 900 : LFCB + L FDA = 180" : LEDF is a cyclic gradilateral

MATHEMATICS Extension 1 : Question..... Marks Suggested Solutions **Marker's Comments** Note: Anyone who 11 just states cyclic quadrilaterals without proving them will get o. Other methods include: * Similar Triangles Construct CD let LDAR= d * Cyclic quadrilaterals LDAB = LDLB (angles at the circumference standing = 2 on the same are DB) * Altitudes of a triangle are concurrent. LDLB=LDFE langles at the civinference stending = 2 on the same arc, (yulic grad LEDE) LFGB = 180-LFBG - d (age sum of AFGB) But LFBG= 180- X-90 (angle Sun of ADAB) :. LFGB = 180 - (180-2-90) - 2 = 90 (FF) AR Mark Allocations: I if students were able to use angles at the Circumference standing on the same arc' within the cyclic gradilatura CEDF proven in part i)

$$\frac{MATHEMATICS Extension 1: Question......
Suggested Solutions Marks Marker's Comments
$$\frac{(1)}{\beta}$$

$$\frac{1}{\beta}$$

$$\frac{1$$$$

MATHEMATICS Extension 1 : Question..... **Suggested Solutions** Marks **Marker's Comments** $\frac{1}{10} f'(x) = \frac{1}{x} + \sin x$ $x_{1} = 1.5 - f(1.5)$ f'(1.5)1.299) $e_1 = 16x - 4x^2 + 20$ 2V=8x-2x+10_ for multiplying half
 for differentiating $\frac{d}{du}\left(\frac{1}{2}v\right) = 8 - 4x$ =-4(x-2) i = -4(x-2)ii) $\dot{x} = 0 \rightarrow x = 2$. (1) x=2 $\frac{1}{2} \sqrt{1} = \frac{16(2) - 4(2)^{2} + 20}{= 32 - 16 + 20}$ = 36 $\frac{1}{2} \sqrt{16} + \frac{1}{20} + \frac{1}{20}$: Max Speed = 6cm/s.

Extension 1 Ouestion 12	TRIAL	Term 3 2019		JRAHS
(a)			T	
	$\sin 3x = \cos 2x$			
c π	$\cos\left(\frac{\pi}{2} - 3x\right) = \cos 2$	2 <i>x</i>	1	For expressing the given equation in a form that will enable one to obtain
$\frac{\pi}{2}$	$3x = 2\pi n \pm 2x, n$	$\in Z$		the general solution.
	$3x \pm 2x = \frac{\pi}{2} - 2\pi r$	1		
$x=\frac{\pi}{10}$	$-\frac{2\pi n}{5}$ or $x =$	$\frac{\pi}{2}-2\pi n$	1	For both correct solutions
(i)			1	Tor oour correct solutions
$\cos 2x = \cos\left(\frac{\pi}{2} - 3x\right)$	$x = \frac{2\pi n}{5} + \frac{2\pi n}{10}$	$\frac{\pi}{10} or \ x = \frac{\pi}{2} - 2\pi n$		
(ii)		π		
$\sin 3x = \sin\left(\frac{\pi}{2}\right)$	$(-2x) \Rightarrow x =$	$=\frac{n\pi + (-1)^n \frac{\pi}{2}}{3 + (-1)^n 2}$		
(iii)		π		
$\sin\left(\frac{\pi}{2}-2x\right) =$	$\sin 3x \qquad \Rightarrow x$	$=\frac{\frac{n}{2}-n\pi}{2+(-1)^{n}3}$		
(iv)				
5	$\sin(2x+x)=\cos 2$	x		
\Rightarrow 4 sin	$x^{3}x - 2\sin^{2}x - 3\sin^{2}x$	$\ln x + 1 = 0$		
⇒ sin	$x = 1$ or $\sin x =$	$=\frac{-1\pm\sqrt{5}}{4}$		This step is needed for the 1 st mark
$\Rightarrow x = \frac{\pi}{2} \text{or } x = \frac{\pi}{10} ($	or 18°) or $\frac{3\pi}{10}$ (6)	or 54 ⁰) [acute angles]		
So formulate the general se	olutions!!!!!			

(b)		
$V = \frac{4}{3}\pi r^3$		
$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$		
$\Rightarrow -2 = 4\pi r^2 \times \frac{dr}{dt}$	1	For recognising that the
$\therefore \frac{dr}{dt} = -\frac{1}{8\pi}$		negative AND showing use of the related rates concept.
But $A = 4\pi r^2$		T
$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$		
$=8\pi r\times\left(-\frac{1}{8\pi}\right)$		
= -r		
When $r = 2$, $\frac{dA}{dt} = -2$	1	Find the rate of change of the area.
Therefore the balloon is shrinking at 2 cm^2/s	1	For answering the question i.e. rate at which the balloon shrinks
Note:		Maximum 2 marks if negative rate AND/OR
$V = \frac{4}{3}\pi r^3 = \frac{1}{3}A r$		omitted.
$\frac{dV}{dr} \neq \frac{1}{3}A$		

(c)		
$\left(x^2 - \frac{1}{\sqrt{x}}\right)^n = \sum_{k=0}^n \binom{n}{k} (x^2)^k \left(-\frac{1}{\sqrt{x}}\right)^{n-k}$		
$T_{k+1} = \binom{n}{k} (x^2)^k \left(-\frac{1}{\sqrt{x}}\right)^{n-k}$ $= \binom{n}{k} x^{2k} (-1)^{n-k} x^{-\frac{1}{2}(n-k)}$	1	For the compact form of the binomial expansion or the general term, including the consideration for the negative in the 2 nd term of the binomial.
For non-zero constant $\frac{5}{2}k - \frac{1}{2}n = 0$	1	For correctly equating the power of the term in x to zero.
which gives $n = 5\kappa$		
But $k \in \mathbb{Z}$, and hence <i>n</i> is a multiple of 5		
Note: If $T_{k+1} = {n \choose k} (x^2)^{n-k} \left(-\frac{1}{\sqrt{x}}\right)^k$, then $n = \frac{5k}{4} = 5(\frac{k}{4})$, which still implies that <i>n</i> is a multiple of 5		
(d)		
(i) Sample space with no restrictions: $\binom{13}{5} = 1287$	1	Sample space - no restrictions
$P(1M, 1W) = 1 - (P(all M) + P(all W))$ $\binom{6}{r} + \binom{7}{r}$	1	0 1 1 1 1
$=1-\frac{(5)}{\binom{13}{5}}$	1	Correct probability
$=\frac{140}{143}$		
OR (4M, 1W), (3M, 2W), (2M, 3W), (1M, 4W)		
$P = \frac{\binom{6}{4} \times \binom{7}{1} + \binom{6}{3} \times \binom{7}{2} + \binom{6}{2} \times \binom{7}{3} + \binom{6}{1} \times \binom{7}{4}}{\binom{13}{5}} = \frac{1260}{1287}$		
$=\frac{140}{143}$		

(ii)	With no restrictions, 5 people in a circle can Be arranged in 4! Ways.	1	For sample space
	Men can be together in 2! Ways		
	Women can be arranged in 3! Ways		
	$\therefore P(men NOT together) = 1 - P(men together)$		
	$= 1 - \frac{2! \times 3!}{4!}$ $= 1 - \frac{1}{2}$ $= \frac{1}{2}$	1	Correct probability
	OR		
	Fix Man:		
	So 2 spots for Him.		
	Woman in 3! Ways		
	So $P(not together) = \frac{3! \times 2}{4!} = \frac{1}{2}$		
(e)			
(i)	$y = ut\sin\alpha - \frac{1}{2}gt^2$		
	$\dot{y} = u \sin \alpha - gt$		
	Bu at maximum height $\dot{y} = 0$	1	For using y and i to get
	Hence $u \sin \alpha - gt = 0$, from which $t = \frac{u \sin \alpha}{g}$	1	time of flight
(ii)	By similar arguments to (i), the time for the second particle to		NOTE: reaching the
	reach maximum height is $t = \frac{w \sin \beta}{g}$		same maximum height does not necessarily
	As both particles are fired simultaneously, their flight times to	1	mean that their flight
	collide are equal.	1	timos are equal.
	$u\sin\alpha = w\sin\beta$		Equating their vertical
	Hence $\frac{g}{g} = \frac{g}{g}$		get the result i.e. $v_A = v_B$
	From which $u \sin \alpha = w \sin \beta$		Jan State St
· · ·			

(iii)	As distances are involved, there is no need to consider		
	direction		
	Now $d = x_A + x_B$		
	$= ut_A \cos \alpha + wt_B \cos \beta$ $= u\left(\frac{w\sin\beta}{g}\right)\cos\alpha + w\left(\frac{u\sin\alpha}{g}\right)\cos\beta$	1	This step must be shown to get the 1 st mark
	since $t_A = t_B$, $\frac{u \sin \alpha}{g} = \frac{w \sin \beta}{g}$	1	The reason for the transformation of the distance equation to include sines and cosines
	$\therefore d = \frac{uw}{g} (\sin\beta\cos\alpha + \sin\alpha\cos\beta)$ $= \frac{uw}{g} \sin(\alpha + \beta)$		NOTE : This is a SHOW question and as the algebra is trivial, all working/reasons MUST be included

(

MATHEMATICS Extension 1 : Question					
Suggested Solutions	Marks	Marker's Comments			
ii) $V = \pi \int_{0}^{\frac{\pi}{4}} (4\cos^{2}x - \sec^{2}x) dx$ = $\pi \int_{0}^{\frac{\pi}{4}} (2\cos^{2}x + 2 - \sec^{2}x) dx$	1				
as $\cos \pi = 2(\cos \pi (1))$ = $\pi [\sin 2\pi + 2\pi - \tan \pi]^{\frac{3}{4}}$ = $\pi [\sin \frac{\pi}{2} + \frac{\pi}{2} - \tan \frac{\pi}{4} - 0]$ = $\pi (1 + \frac{\pi}{2} - 1)$ = $\frac{\pi^{2}}{2} u^{3}$	}				
c) $1 \times 2^{\circ} + 2 \times 2' + 3 \times 2^{2} + + n \times 2^{n-1} = 1 + (n-1) \times 2^{n-1}$	2				
Prove true for her	1				
$RHS = 1 + (1 - 1) \times 2^{1}$					
= 1+0					
· 145= D45					
]]	1 for:			
true for n=1		- REZT			
$\frac{1+35}{10} = \frac{1}{12} + \frac{1}{2} +$		- statements of n=k, n=k+1			
Prove true for n= R+1		- conclusion			
$ie. 1 \times 2^{\circ} + 2 \times 2^{1} + \dots + k \times 2^{k-1} + (k+1) \times 2^{k}$		-byassumption			
$= 1 + R \times Z$					
$LAS=1\times 2^{+}+3\times 2^{+}+\ldots+R\times 2^{-}+(R\times 1)\times 2^{R}$	h				
$= 1 + (R-1)\chi_2 + (R+1)\chi_2$					
$= 1 + 2^{k} (k - 1 + k + 1)$	$\left \right\rangle$				
$= 1 + 2^{k}(2^{k})$					
$= 1 + 2^{k+1} \times k$					
= RHS]]				
: true for n=k+1					
the statement is true by the					
process of mathematical induction.					

Suggested Solutions Marks **Marker's Comments** d)i) $P(one 6) = {}^{4}C_{1} \times {}^{1}C_{6}^{3}$ 125 = 324 = 0,38580... = 0.39 (2dp) ii) P (two 6 after two rolls) 1⇒ one case = P(1st roll no 6's) × P(2nd roll two 6's) 2 => two cases + P(1st roll one 6) × P (2nd roll one 6) + $P(1st roll two 6's) \times P(2nd roll no 6)$ = $(\frac{5}{6})^4 \times {}^4C_2 \times (\frac{1}{6})^2 \times (\frac{5}{6})^2$ 3=> all cases plus final $+ {}^{4}C_{1} \times (\frac{1}{6}) \times (\frac{5}{6})^{3} \times {}^{3}C_{1} \times (\frac{1}{6}) \times (\frac{5}{6})^{2} + {}^{4}C_{2} \times (\frac{1}{6})^{2} \times (\frac{5}{6})^{2} \times (\frac{5}{6})^{2} \times (\frac{5}{6})^{2} \\ 0.055816329.... + \frac{3125}{23328}$ solution correct. $= 0.055816329.... + \frac{625}{7776}$ = 0.270151034 ... - 0.27 (2dp)

(3)

Question 14 (15 marks)

(a) (i) Let
$$u = \ln x$$
 $\frac{du}{dx} = \frac{1}{x}$ $xdu = dx$
 $\int \frac{1}{x \ln x} dx = \int \frac{1}{xu} xdu = \int \frac{1}{u} du = \ln u + C$
 $\int \frac{1}{x \ln x} dx = \ln(\ln x) + C$
(i) $1 = \int \frac{1}{2} \frac{1}{x \ln x} dx$
 $1 = \ln(\ln x) + C$
(ii) $1 = \int \frac{1}{2} \frac{1}{x \ln x} dx$
 $1 = \ln(\ln P) - \ln(\ln 2)$
 2^{nd} mark
 $e = \log_2 P$
(b) (i) Gradient of the line $y = x$ is 1
gradient $PQ = \frac{ap^2 - aq^2}{2ap - 2aq}$
gradient $PQ = \frac{a(p-q)(p+q)}{2a(p-q)}$
 $1 = \frac{p+q}{2}$
 $p + q = 2$ as required
(ii) Equation of normals: $y - ap^2 = -\frac{1}{p}(x - 2ap)$; $y - aq^2 = -\frac{1}{q}(x - 2aq)$ [1st mark]
Solve simultaneously. $y = aq^2 - \frac{1}{p}(x - 2aq)$; $y = aq^2 - \frac{1}{q}(x - 2aq)$
 $ap^2 - \frac{1}{p}(x - 2ap) = aq^2 - \frac{1}{q}(x - 2aq)$ $(x - pq)$
 $ap^3 q - q(x - 2ap) = aq^2 - p(x - 2aq)$

(i)
$$y = x + \sqrt{x^2 + 1}$$

 $x = y + \sqrt{y^2 + 1}$
 $(x - y)^2 = y^2 + 1$
 $x^2 - 2xy + y^2 = y^2 + 1$
 $x^2 - 2xy + y^2 = y^2 + 1$
 $x^2 - 1 = 2xy$
 $\frac{x^2 - 1}{2x} = y$
 $\frac{1}{2} \left(\frac{x^2 - 1}{x} \right) = y$
 $f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$
(i)
 y
 $f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$
(ii)
 y
 $f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$
(ii)
 y
 $f^{-1}(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$
 $f^{-1}(x) = \frac{1}{2} \left[\frac{x^2}{2} - \ln x \right]_{1}^{1+\sqrt{2}}$
 $f^{-1}(x) = \frac{1}{2} \left[\left(\frac{1 + \sqrt{2}}{2} \right) - \ln(1 + \sqrt{2}) - \left(\frac{1}{2} \right) \right]$ [2nd mark for substitution into correct expression]

$$A = 1 + \sqrt{2} \cdot \left[\frac{(1 + \sqrt{2})^2}{4} - \frac{\ln(1 + \sqrt{2})}{2} - \frac{1}{4} \right]$$

$$A = 1 + \sqrt{2} \cdot \left[\frac{3 + 2\sqrt{2} - 1}{4} - \frac{\ln(1 + \sqrt{2})}{2} \right]$$

$$A = \frac{4 + 4\sqrt{2}}{4} - \frac{2 + 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{4 + 4\sqrt{2} - 2 - 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{2 + 2\sqrt{2}}{4} + \frac{\ln(1 + \sqrt{2})}{2}$$

$$A = \frac{1 + \sqrt{2}}{2} + \frac{\ln(1 + \sqrt{2})}{2} = \frac{1}{2} \left[1 + \sqrt{2} + \ln(1 + \sqrt{2}) \right]$$
 as required [3rd mark for final expression]